Skip to main content

When Art Intersects with Mathematics: Constantin Brancusi, M. C. Escher and Cristian Todie

(Note: this essay is dedicated to my father, the mathematician Henri Moscovici)
It’s only relatively recently in cultural history—during the past hundred years or so–that the disciplines became so highly specialized (and advanced) that it’s nearly impossible for anyone to be “cutting edge” in both the arts/humanities and science/mathematics. But the fields of human knowledge did not used to be so sharply delineated. Plato, for instance, was not only a great writer of dialogues and one of the greatest philosophers of all time, but also an outstanding mathematician. The school he founded in 387 BC, the Academy of Athens, was inspired by Pythagoras and emphasized mathematics as the foundation for all the other fields of inquiry. Likewise, his student, Aristotle,was considered a founder of several empirical branches of science, including physics, astronomy and biology (or natural science, as it was called until the nineteenth century).
Even as late as the Enlightenment, the French philosophes—particularlyCondorcet, Condillac and Buffon–could hope to be at the forefront of scientific discoveries and be well-versed in literature, art and philosophy. One of my personal favorites, the salonnière Emilie (Marquise) du Châtelet, was not only highly cultivated, but also a world-class mathematician and physicist who conducted her own scientific experiments—such as suspending wooden spheres from rafters–to test Newton’s theories.
This confluence of the disciplines—like the ideal of the “Renaissance man” (or woman) who masters all fields–has become only a distant memory in intellectual history. But sometimes there are resonances and intersections between the arts and the sciences even today. Like art and poetry, mathematical innovations are the result of an intuitive process that depends upon inspiration.  As Bertrand Russell eloquently stated in his essay, “The Study of Mathematics”  (1919):
“Mathematics, rightly viewed, possesses not only truth, but supreme beauty—a beauty cold and austere, like that of sculpture, without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show. The true spirit of delight, the exaltation, the sense of being more than Man, which is the touchstone of the highest excellence, is to be found in mathematics as surely as poetry.”
Just as mathematics is, in some ways, an art form, so the arts and humanities borrow some of their standards of value (and proof) from math and science. In my estimation, the best writing in the humanities and social sciences abides by the standards of logical rigor, valid or plausible premises and “elegant proof” that are upheld in the sciences.  An elegant argument in the humanities, as in mathematics, is one that:
a)   uses a minimum of additional assumptions
b)   is “simple” or succinct
c)    is original, in arriving at new and surprising conclusions
d)   is based on defensible premises
e)   its conclusions are generalizable, in that they can be applied to similar problems
But there are even closer resonances between art and science. If mathematics is, in some respects, an art form—at least in its creative process–the opposite can be said as well: art can be mathematical. Even in the twentieth and twenty-first centuries, when the push for the specialization of the disciplines has reached an extreme, there are artists who illustrate the elegance, beauty and abstraction of mathematics.
Three of the most notable examples that I’d like to discuss here are M. C. Escher—an artist who achieved enormous fame during his own lifetime and remains very popular to this day—Constantin Brancusi and a Romanian-born contemporary artist with whom I’ve had the pleasure of communicating by email, Cristian Todie, whose works are highly appreciated in his host country, France. In a way, this warm reception is not surprising, since France has been an ideal cultural environment for many Romanian writers and artists, includingConstantin Brancusi, the sculptor whom Todie cites as his main influence.  So let’s begin with a brief discussion of Brancusi’s works in relation to mathematics and philosophy.
Constantin Brancusi
Constantin Brancusi
Brancusi’s sculptures are mathematical in their geometric designs and their elegance  (understood in the scientific and philosophical sense of the term). His first major work is The Prayer (1907), a minimalist sculpture that reflects the artist’s unique and eclectic mixture of influences: Romanian folkloric peasant carvings, classical sculpture, African figurines and Egyptian art. A very talented craftsman and woodcarver, Brancusi also innovated a new method of creating sculptures: carving them from wood or stone as opposed to modeling them from clay or plaster, as his mentor Auguste Rodin and many of his followers were doing at the time. Most likely deliberately named after Rodin’s The Kiss (1908), Brancusi’s second major sculpture (by the same name) effaces the realism of the lovers, as they embrace to form one rounded, harmonious monolith: quite literally, a monument to love.  Years later, in Bird in Space (1928), the artist conveyed movement, altitude, aerodynamics and flight rather than the external features of the bird itself. The pinnacle of his career and the logical conclusion of capturing feelings and concepts through essential forms, Endless Column  (1938) represents the soaring spirit and heroism of the WWI Romanian civilians who fought against the German invasion.
Constantin Brancusi
One of the most innovative aspects of Brancusi’s art is that his sculptures capture the essence rather than the form of objects. Relying upon the Platonic and Aristotelian definitions of forms, the artist distinguished his minimalismfrom abstraction. Brancusi protested: “There are idiots who define my work as abstract; yet what they call abstract is what is most realistic. What is real is not the appearance, but the idea, the essence of things.” For Plato, Forms are the original, essential perfect models—such as goodness, virtue or humanity–for concepts and objects. Aristotle transformed this Platonic notion of Forms, distinguishing between the essential and the contingent, or essence andaccidentThe essence of the object defines what it is no matter how much it changes its appearance or state. Relying upon this Aristotelian concept, Brancusi was one of the first and best known Modernist artists who sought to capture the essence of the emotions and objects he conveyed: be it love and sensuality or heroism and courage.
M. C. Escher
Escher—the artist I consider, in both content and style, to be the closest precursor to Cristian Todie–remains one of the most popular twentieth century artists, internationally. Recently, the Escher exhibition in Brazil became, according to Blouin Art Info, “the world’s most popular art show,” drawing tens of thousands of viewers. (Blouin Art Info, April 13, 2012) Part of Escher’s continuing popularity can be explained in terms of the universal appeal of his art, which attracts those who love art and those who love mathematics or science alike. Like Picasso and Brancusi, in many respects Escher was an autodidact. He had little formal training in mathematics.
M. C. Escher
In fact, he discovered his passion for geometry, topology and visual paradoxes almost by accident, thanks to his travels to Alhambra, Spain. Escher was fascinated by the intricate, mathematical designs—or tessellations–he saw in the architecture of Alhambra, whose interlocking repetitive patterns of design would inspire much of his artwork.
M. C. Escher tessellation
The word “tessellation” comes from the Latin term “tessera” or small stone cube. “Tessellata” were the mosaic geometric designs of mosques (in which the representation of people or “idols” was strictly forbidden) as well as of Roman floors and buildings in general. Escher’s designs would “interlock” many objects–including his famous representations of fish and various critters–in fascinating patterns that create the magic of optical illusion.
M. C. Escher
Escher’s keen interest in geometric patterns led him to study non-Euclidian geometry. Euclidian and non-Euclidian geometry differ in their representation of parallel lines. Euclid’s fifth postulate states: “Within a two-dimensional plane, for any given line X and a point A, which is not on X, there is exactly one line through A that does not intersect X.” Simply put, in Euclidian geometry two parallel lines will never meet. They will remain at the same distance from one another, to infinity. In non-Euclidean geometry, however, parallel lines can meet, curving towards each other and eventually intersecting. In many of his lithographs, drawings, sculptures and paintings, Escher creates optical illusions that give us a representation of non-Euclidean space. One of his most famous and interesting works, Ascending and Descending, depicts lines of people climbing up and down an infinite loop. This construction is impossible in reality but can be created through playing with perspective.
Escher was also intrigued by topology. This relatively new branch of mathematics, derived from the Greek roots “topos” or “place” and “logos” or “word” and “study of,” analyzes the properties of objects that remain the same even when objects are deformed or stretched. According to  my father, Henri Moscovici (who works in the field of topology), topology can be explained as follows: “Two “objects” (topological spaces) are considered identical if they are homeomorphic, ie there is such a continuous function with continuous inverse between them. For example, a perfect sphere and the surface of potato or a tomato, are homeomorphic.”
In fact, of particular interest to both Escher and Todie are such “homeomorphisms.” One doesn’t have to know much about mathematics, however, to appreciate Waterfall Up and Down, which includes the irregular perspective we find in the Moebius strip.  Escher’s art represents the best of both worlds. For those who love math and science, Escher is one of the rare artists that gives these fields an artistic form. For those of us who don’t, Escher shows us that mathematics can be fun and ingenious.
Cristian Todie
Today, Cristian Todie enjoys a similar universal appeal, intriguing those who appreciate math and the arts and humanities alike. Born in 1954 in Constanta, Romania and living in France for many years, Todie creates non-Euclidian sculptures and designs that catch the eye and fascinate viewers. He sees himself as perpetuating, for our times, the “minimalist” sculpture of Brancusi, particularly in its geometric designs and (Aristotelian) emphasis upon capturing the inner essence of objects rather than their changing, accidental properties.
Cristian Todie
If you take a look at his website, called Art Théorique, you’ll also see that, as for Escher, mathematics lies at the basis of Todie’s art: in an intuitive and visual manner that any viewer can enjoy, without needing advanced mathematical training.

In Todie’s digital photography, however, you’ll also detect a strong Dadaistinfluence. This is somewhat surprising, since historically this art movement set itself against math and science. Founded by a Romanian poet, Tristan Tzara, Dada was born in the wake of the bloodshed and devastation of WWI. Many of the writers and artists associated with this movement rejected “logic” and “reason,” blaming them for the technological breakthroughs that made the ravages of war possible. Like Surrealism, the art movement that grew out of it, Dadaism is whimsical, free and imaginative. It’s defined not as much positively, in terms of what it is, as negatively, in terms of what it is not. As Hugo Ball famously stated, “For us, art is not an end in itself… but it is an opportunity for the true perception and criticism of the times we live in.”
Cristian Todie
In the online exhibit called One Man Show, many of Todie’s images congruously combine a fascination with topology, optical illusions of non-Euclidean geometry with Dadaist absurd or whimsical images that transpose our daily, familiar reality into the domain of playfulness and imagination.

Cristian Todie
Todie’s innovative topological art confirms Henry David Thoreau’s famous saying: “It’s not what you look at that matters, it’s what you see.” And part of what you’ll see in Todie’s sculptures and photographs—much like in the works of his precursors, Brancusi and Escher–is a world where the sharply separated and largely parallel domains of mathematics and art intersect in the imaginative shapes of non-Euclidian space.
Claudia Moscovici,


Post a Comment

Most popular Articles

Daniel Gerhartz: The Beauty of Representational Art

Why is Rhythm in Art Of Crucial Importance?